AI & Data

Machine Learning (ML)

Implement supervised/unsupervised models, feature engineering, and evaluation.

All topics in AI & Data

 Artificial Intelligence (AI)

 Explore intelligent agents, planning, and reasoning across real‑world tasks.

 Machine Learning (ML)

 Implement supervised/unsupervised models, feature engineering, and evaluation.

30‑day curriculum

Day 1 β€” What is ML?

Types (Supervised, Unsupervised, Reinforcement)

Day 2 β€” Python Libraries

NumPy, Pandas, Matplotlib, Seaborn

Day 3 β€” ML/DL Foundations I

Missing values, encoding, scaling

Day 4 β€” Train-Test Split

Train-Test Split, Cross-validation, Performance Metrics

Day 5 β€” Linear Regression

Theory + implementation

Day 6 β€” Multiple Linear Regression

Multiple Linear Regression & Polynomial Regression

Day 7 β€” Mini Project

House Price Prediction (Regression)

Day 8 β€” Logistic Regression

Logistic Regression

Day 9 β€” Decision Trees

Decision Trees & Random Forests

Day 10 β€” K-Nearest Neighbors

K-Nearest Neighbors (KNN)

Day 11 β€” Support Vector Machines

Support Vector Machines (SVM)

Day 12 β€” NaΓ―ve Bayes

NaΓ―ve Bayes Classifier

Day 13 β€” K-Means Clustering

K-Means Clustering (unsupervised)

Day 14 β€” Mini Project

Iris Flower Classification

Day 15 β€” Feature Selection

Feature Selection & Engineering

Day 16 β€” Ensemble Methods

Bagging, Boosting, AdaBoost, XGBoost

Day 17 β€” Dimensionality Reduction

PCA, t-SNE

Day 18 β€” Overfitting & Regularization

Overfitting, Underfitting, Regularization (Lasso, Ridge)

Day 19 β€” Hyperparameter Tuning

Grid Search, Random Search

Day 20 β€” Model Evaluation

Confusion Matrix, ROC, AUC, F1-score

Day 21 β€” Mini Project

Spam Email Classifier

Day 22 β€” Time Series Forecasting

Basics, ARIMA intro

Day 23 β€” Recommender Systems

Content-based, Collaborative Filtering

Day 24 β€” Natural Language Processing

Bag-of-Words, TF-IDF

Day 25 β€” Sentiment Analysis

NLP + ML

Day 26 β€” ML Pipelines

ML Pipelines & Deployment Basics

Day 27 β€” Final Project Selection

Choose one: Customer Churn Prediction / Movie Recommendation System / Fake News Detection / Stock Price Forecasting

Day 28 β€” Final Project Development

Data collection & preprocessing

Day 29 β€” Final Project Implementation

Model building & evaluation

Day 30 β€” Project Presentation

Project Presentation + GitHub Upload + Wrap-Up

Apply for this topic